dc electrokinetic transport of cylindrical cells in straight microchannels.
نویسندگان
چکیده
Electrokinetic transport of cylindrical cells under dc electric fields in a straight microfluidic channel is experimentally and numerically investigated with emphasis on the dielectrophoretic (DEP) effect on their orientation variations. A two-dimensional multiphysics model, composed of the Navier-Stokes equations for the fluid flow and the Laplace equation for the electric potential defined in an arbitrary Lagrangian-Eulerian framework, is employed to capture the transient electrokinetic motion of cylindrical cells. The numerical predictions of the particle transport are in quantitative agreement with the obtained experimental results, suggesting that the DEP effect should be taken into account to study the electrokinetic transport of cylindrical particles even in a straight microchannel with uniform cross-sectional area. A comprehensive parametric study indicates that cylindrical particles would experience an oscillatory motion under low electric fields. However, they are aligned with their longest axis parallel to the imposed electric field under high electric fields due to the induced DEP effect.
منابع مشابه
Electrokinetic instability in microchannel ferrofluid/water co-flows
Electrokinetic instability refers to unstable electric field-driven disturbance to fluid flows, which can be harnessed to promote mixing for various electrokinetic microfluidic applications. This work presents a combined numerical and experimental study of electrokinetic ferrofluid/water co-flows in microchannels of various depths. Instability waves are observed at the ferrofluid and water inte...
متن کاملElectrokinetic Velocity Characterization of Microparticles in Glass Microchannels
Insulator-based dielectrophoresis (iDEP) is an efficient technique with great potential for miniaturization. It has been applied successfully for the manipulation and concentration of a wide array of particles, including bioparticles such as macromolecules and microorganisms. When iDEP is applied employing DC electric fields, other electrokinetic transport mechanisms are present: electrophoresi...
متن کاملInvestigation of electrokinetic mixing in 3D non-homogenous microchannels
A numerical study of 3D electrokinetic flows through micromixers was performed. The micromixers considered here consisted of heterogeneous rectangular microchannels with prescribed patterns of zeta-potential at their walls. Numerical simulation of electroosmotic flows within heterogeneous channels requires solution of the Navier-Stokes, Ernest-Plank and species concentration equations. It is kn...
متن کاملModeling electrokinetic flows in microchannels using coupled lattice Boltzmann methods
We present a numerical framework to solve the dynamic model for electrokinetic flows in microchannels using coupled lattice Boltzmann methods. The governing equation for each transport process is solved by a lattice Boltzmann model and the entire process is simulated through an iteration procedure. After validation, the present method is used to study the applicability of the Poisson–Boltzmann ...
متن کاملMixing enhancement by utilizing electrokinetic instability in different Y-shaped microchannels
An experimental study was conducted to assess the effectiveness of manipulating convective electrokinetic instability (EKI) waves to control/enhance fluid mixing inside three Y-shaped microchannels, which includes a conventional straight channel, a channel with micro-cavities, and a channel with microsteps. Epi-fluoresence imaging technique was used to conduct qualitative flow visualization and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomicrofluidics
دوره 3 4 شماره
صفحات -
تاریخ انتشار 2009